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Abstract

New boundary constraints for elliptic partial differential equations as used in grid generation problems in gener-

alized curvilinear coordinate systems are proposed in this paper. These constraints, based on the principle of local

conservation of thermal energy in the vicinity of the boundaries, are derived using the Green�s Theorem. They uniquely

determine the so called decay parameters in the inhomogeneous terms of these elliptic systems. These constraints 1 are

designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is

observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay

parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic

grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new

constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints

uniquely determine the solution to the internal elliptic problem thus eliminating the nonuniqueness of the solution of an

internal boundary value grid generation problem with Neumann boundary conditions.
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1. Introduction

A large amount of effort has been devoted to developing, enhancing and using the grid generation ca-

pability (e.g., see [1–13]) through the solution of elliptic partial differential equations (pdes). As shown in

the present study, elliptic pdes used in grid generation problems reduce to limiting forms near boundaries

that are similar to the equations used in nuclear physics, diffusion–reaction problems, vortex problems,

electric space charge problems, steady state heat transfer (conduction and convection) through long thin
fins, etc. In the grid generation problems, these pdes contain appropriate inhomogeneous terms that control
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the distribution of grid points especially near the boundaries. In the literature, the elliptic pdes used for grid

generation are erroneously referred to as Poisson equations which contain source terms that are functions

of only the independent variables, whereas, in the pdes for grid generation, these inhomogeneous terms also

contain terms proportional to the dependent variables. Actually, in two-dimensional grid generation

problems, close to a curvilinear boundary, the governing equations reduce to the long thin fin heat transfer

equations with a finite heat transfer coefficient in the transverse direction (normal to the plane of paper) and

a large heat transfer coefficient in the lateral direction.

Many of the elliptic grid generation studies referred to above have been centered on developing body
conforming grids around bodies for external fluid flow simulations. The grids thus generated are smooth

with at least first two derivatives continuous, appropriately stretched or clustered normal to any given

coordinate direction and orthogonal over most of the grid domain. The inhomogeneous terms afford a grid

control to satisfy clustering and orthogonality around specific surfaces (in three dimensions) and lines (in

two dimensions).

In external flows, these inhomogeneous terms, i.e., the source terms and the dependent variable pro-

portional terms, are designed to exponentially vanish away from the body so the problem reduces to solving

a Laplacian away from the body.
In the present study, the inhomogeneous terms used are appropriate also for an interior grid generation

problem where all the boundaries enveloping the grid will affect the solution through these terms. These

terms are designed by interpreting their meaning physically through the principle of local conservation of

thermal energy close to the grid boundaries.

The elliptic grid generation methodology used here has been shown to work for numerous geometrical

configurations in [1,2,4] and a host of other applications in other reported studies. The important im-

provement in the present study over these previous methods is in the provision of the new set of boundary

constraints that obviates the need for time-consuming manual hit and trial decay parameter specification.
Additionally, these decay parameters have been defined as functions of appropriate coordinate variables

along a given boundary and are not just constants along that boundary, which makes it possible to au-

tomatically cluster the grids in two orthogonal directions in the vicinity of two adjacent boundaries. The

new constraints are applicable to both two-dimensional and three-dimensional grid generation problems.

The problems of grid cross-over resulting in negative Jacobians are eliminated since the energy conser-

vation is satisfied all over the domain. The elliptic pdes are solved without any free parameters making the

procedure fully automatic. There is no need for any intermediate transformation and redistribution of points

along boundaries, as in, e.g. [10]. Also, there is no need for prescription of the grid cell aspect ratio (the dis-
tortion function, f ðn; gÞ), as in [11] or for the prescription of distributed force functions which involve another
free parameter, a force constant, as in [12]. Also, unlike in [13], where the Neumann–Dirichlet boundary

conditions cannot be used when distortion function is calculated iteratively from its definition equation, any

combination of Neumann–Dirichlet boundary conditions can be used in the present method.

However, having said that, for certain boundary point distributions along the boundaries, strictly or-

thogonal grid near those boundaries may not be attained, as is the case in other methods too. In studies

[10–13] reported earlier, the distinction has been made between the strictly orthogonal and the nearly or-

thogonal grids, which correspond to strong and weak constraint formulations, respectively, as discussed in
an earlier study [11]. For example, Visbal and Knight [10] state that the strictly orthogonal grids can be

generated with a partial control of the mesh spacing and nearly orthogonal grid with strict control of the

mesh spacing. This is in keeping with the observation that with Neumann boundary conditions, the grids

generated near the boundaries are strictly orthogonal at those boundaries, but only nearly orthogonal with

Dirichlet boundary conditions prescribed at those boundaries.

Various geometrical configurations, an annulus, a square, a convex geometry used as a test case in

[11–13], a gear-tooth and a full gear are considered to demonstrate the usefulness of the new boundary

constraints derived in this study. The gear tooth geometry treated here corresponds to that of a planar
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cross-section of a spiral-bevel pinion gear tooth typical of the OH-58 helicopter transmission pinion. This

study is driven by the need to generate time-series vibration signatures from the OH-58 helicopter trans-

mission by finite-difference simulation using the appropriate structural dynamic equations. The choice of

elliptic pdes for grid generation is entailed by the need to generate time series data as accurately as possible

(see relative comparison with other representative grid generation methods in [9]).
2. Governing equations

The derivation of the boundary constraints as applied to two-dimensional grid generation problems is

given below. The extension to three dimensions is straightforward, and results of a three-dimensional study

using the new constraints will be reported later.

The two-dimensional governing equations for an elliptic grid generation problem in an appropriately

defined planar domain, as given in [1,2], are

nxx þ nyy ¼ P ðn; gÞ;
gxx þ gyy ¼ Qðn; gÞ;

where n and g are the generalized curvilinear coordinates, x and y are the Cartesian coordinates, and the

P ðn; gÞ and Qðn; gÞ are the inhomogeneous terms.

The form of the inhomogeneous terms, P and Q, as proposed by Thompson et al. [2] is exponential and is
given by

P ðn; gÞ ¼ �ai sgnðn � niÞ expð�bijn � nijÞ;
Qðn; gÞ ¼ �ci sgnðg � giÞ expð�dijg � gijÞ;

where the suffix i refers to the grid boundary in question, bi and di are specified constants, called the decay

parameters, and ai and bi are also specified constants, where ai ¼ ci and bi ¼ di.
Steger and Sorenson [4] modified these terms to control the grid close to a given coordinate boundary,

say, g, as

P ðn; gÞ ¼ �aiðnÞ sgnðg � giÞ expð�bijg � gijÞ;
Qðn; gÞ ¼ �ciðnÞ sgnðg � giÞ expð�dijg � gijÞ;

where aiðnÞ and ciðnÞ are calculated iteratively as part of the solution to satisfy both the orthogonality

condition at a given boundary gi as well as the requirement of a given spacing at that boundary.

In the present study, these terms are further modified as a set for each coordinate direction as

P ðn; gÞ ¼ �aiðnÞ sgnðg � giÞ expð�biðnÞjg � gijÞ; ð1aÞ
Qðn; gÞ ¼ �ciðnÞ sgnðg � giÞ expð�diðnÞjg � gijÞ ð1bÞ

for a given gi boundary, and

P ðn; gÞ ¼ �eiðgÞ sgnðn � niÞ expð�fiðgÞjn � nijÞ; ð1cÞ
Qðn; gÞ ¼ �giðgÞ sgnðn � niÞ expð�hiðgÞjn � nijÞ ð1dÞ
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for a given ni boundary, where the decay parameters, biðnÞ ¼ diðnÞ and fiðgÞ ¼ hiðgÞ are now defined as

functions of the appropriate coordinate variables. As shown below, choice of parameters, bi ¼ di and fi ¼ hi
is appropriate, based on the physical analogies derived from the limiting form of Eqs. (1a), (1b) and

Eqs. (1c), (1d), respectively.

Now, for the sake of argument, without loss of generality, if we take the case where n > ni and g > gi,

then we have the two sets of inhomogeneous terms as

P ðn; gÞ ¼ �aiðnÞ expð�biðnÞðg � giÞÞ; ð1eÞ
Qðn; gÞ ¼ �ciðnÞ expð�biðnÞðg � giÞÞ ð1fÞ

for a given gi boundary, and

P ðn; gÞ ¼ �eiðgÞ expð�fiðgÞðn � niÞÞ; ð1gÞ
Qðn; gÞ ¼ �giðgÞ expð�fiðgÞðn � niÞÞ ð1hÞ

for a given ni boundary.

At the boundaries, where n ¼ ni and g ¼ gi, Eqs. (1e)–(1h), respectively, become

P ðn; gÞ ¼ �aiðnÞ;
Qðn; gÞ ¼ �ciðnÞ

for a given gi boundary, and

P ðn; gÞ ¼ �eiðgÞ;
Qðn; gÞ ¼ �giðgÞ

for a given ni boundary.

Consider a given gi boundary.When biðnÞðg � giÞ is small, the inhomogeneous terms take the form given by

P ðn; gÞ ¼ �aiðnÞð1� biðnÞðg � giÞÞ

and

Qðn; gÞ ¼ �ciðnÞð1� biðnÞðg � giÞÞ:

Similarly, consider a given ni boundary. When fiðgÞðn � niÞ is small, the inhomogeneous terms take the

form given by

P ðn; gÞ ¼ �eiðgÞð1� fiðgÞðn � niÞÞ

and

Qðn; gÞ ¼ �giðgÞð1� fiðgÞðn � niÞÞ:

Therefore, the governing equation for, e.g., n, in the vicinity of the boundary ni, becomes

nxx þ nyy ¼ �eiðgÞð1� fiðgÞðn � niÞÞ

or

nxx þ nyy � eiðgÞfiðgÞn ¼ �eiðgÞ � eiðgÞfiðgÞni: ð2Þ
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If the term, eifin, were absent, the resulting equation would turn out to be a Poisson equation. The equation

given above arises, e.g., in the steady state heat conduction problems in long thin fins, where n is the

temperature and where the heat transfer coefficient in the transverse thin direction is moderate but is large

in the lateral direction, and there is a balance amongst the heat conducted through the fin, heat carried

away from or to it through convection in proportion to this moderate heat transfer coefficient and the heat

sources/sinks distributed over the domain. Consider the case when n > ni, then, defining a new variable

h ¼ n � ni:

Eq. (2) becomes

hxx þ hyy � eiðgÞfiðgÞh ¼ �eiðgÞ: ð3Þ

The term, �ei, can be interpreted as a heat source term.
Eq. (3) tells us that when n > ni, there is a balance among the heat conducted from a control volume in

the interior to the boundary ni, heat convected out of this control volume and the heat generated within the

control volume due to the heat source, eiðgÞ.
Similarly, if we consider the case when ni > n, then Eq. (2) becomes

hxx þ hyy � eiðgÞfiðgÞh ¼ eiðgÞ; ð4Þ

where h ¼ ni � n.
The term, eiðgÞ, can be interpreted as a heat sink term.

Again, Eq. (4) tells us that when n < ni, there is a balance among the heat convected from the boundary

ni to a control volume in the interior, heat conducted into the control volume and the heat lost from the

control volume due to the sink, eiðgÞ.
From Eqs. (3) and (4), it can be seen that for a given convective heat flux (given number of grid lines), as

the product, eifi, decreases, the heat transfer coefficient decreases proportionally in magnitude which means

that the temperature gradient at the boundary ni has increased so that n approaches ni rapidly near the

boundary. This means that there is a large gradient in n from the grid boundary i to the interior, thereby

resulting in a highly clustered grid near the boundary.

Away from this grid boundary, fiðgÞjn � nij is large, and Pðn; gÞ ! 0, Qðn; gÞ ! 0 (from Eqs. (1c) and

(1d)); therefore, we are left with the Laplace equation, Dn ¼ 0. Extremum principle is unconditionally

maintained there, since the solution is harmonic in this case.
Similar arguments hold for a given gi boundary.

Referring to Eqs. (3) and (4), for a given boundary, ni, the Green�s Theorem gives us, respectively,Z Z
S
ð�eiðgÞ þ eiðgÞfiðgÞhÞdr ¼

Z
C
@nhds; ð5Þ
Z Z
S
ðeiðgÞ þ eiðgÞfiðgÞhÞdr ¼

Z
C
@nhds; ð6Þ

where S is the surface area of a closed domain, C is the boundary enclosing this domain, n is the normal to

the boundary, dr is the elemental area and ds is an elemental arc.

The integrands on the left-hand side, �eiðgÞ and eiðgÞfiðgÞh represent the heat sink/source term and the

convection term respectively, and the integrand on the right-hand side represents the heat flux through the
boundary C.

Eqs. (5) and (6) are used as constraints to fix fiðgÞ uniquely for a solution consistent with the specifi-

cation of the boundary data. The extremum principle will be satisfied at the ith boundary, which is the

requirement in the grid generation problems, since the energy conservation principle is satisfied. The term,
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�eiðgÞ, respectively in Eqs. (6) and (5), is calculated iteratively through the solution process, as in [4], which

together with fiðgÞ ensures the grid orthogonality and a given grid spacing at the ith grid boundary.

In the design of the inhomogeneous terms, Pðn; gÞ and Qðn; gÞ in e.g., Eqs. (1c) and (1d), there is no

restriction on the nature of the sink/source term, �eiðgÞ. It can change sign which indicates the presence of

sources and sinks, subject to the constraint given by Eqs. (5) and (6). Otherwise, improper combinations of

sources and sinks will violate the extremum principle. If over the domain, there is a net rate of heat gen-

eration due to the source/sink combination, then there has to be a positive heat flux convected away and

vice versa. This requirement will automatically be satisfied by Eqs. (5) and (6).
If there is a point heat source present in the domain, the isothermals (temperature, i.e., n or g, contour

lines) will tend to cluster around it since the gradients in the vicinity of the source will be positive toward the

source and high, depending upon the strength of the source, and conversely for a heat sink. Same argument

applies to a line heat source and sink. By analogy, if the source term turns out to be positive over some parts

of the domain, then the curvilinear coordinate lines will tend towards lines with higher coordinate values

and vice versa.

It may be noted here that the orthogonality and boundary spacing constraints of [4] are coupled with the

new boundary constraints (Eqs. (5) and (6). The present approach removes the conflict between the pa-
rameters, ei and fi, through, e.g., Eq. (4), since the rate of clustering is determined by the product of ei and
fi, and not by fi alone. Previously, without the availability of, e.g., Eq. (4), the value of ei that would be

calculated through the method of [4], would turn out to be different from the one calculated in the present

case since ei has to satisfy the constraint posed by Eq. (4).

Again, it is worth noting here that the decay parameter, e.g., fiðgÞ, is defined as a function of a given

coordinate direction, g, along a given n boundary, and the boundary constraints, Eqs. (5) and (6), are

applied piece-meal along that n boundary by considering a series of small control volumes along that

boundary. This approach lends itself to a very quick and explicit calculation of the decay parameter
function from the boundary constraints, since the constraints are not transcendental, once eiðgÞ is calcu-
lated. As for clustering at various given locations in a given coordinate direction, the boundary constraints

need to be applied over a small extent of that coordinate direction, i.e., over a small control volume, and the

control volume can be made arbitrarily small by the appropriate initial prescription of grid points along

that boundary.

Similarly, for a given boundary, gi, the corresponding constraints areZ Z
S
ð�ciðnÞ þ ciðnÞbiðnÞhÞdr ¼

Z
C
@nhds; ð7Þ
Z Z
S
ðciðnÞ þ ciðnÞbiðnÞhÞdr ¼

Z
C
@nhds: ð8Þ
3. Solution procedure

First, the boundary data are selected appropriate to the physics of the problem, so that the gradients in

physical quantities can be resolved adequately. Since there is a symmetry plane and a rotational symmetry
present in the gear problem, the half-tooth grid is reflected about this symmetry plane and then the tooth

grid is rotated about a moving axis of periodicity, thus substantially reducing the computational effort in

prescribing the initial distribution of the entire 19-tooth gear at time, t ¼ 0. But, for the elliptic grid gen-

eration of the entire gear after this initial time, periodic boundary conditions are used in the circumferential

direction in the interior. Dirichlet boundary conditions are prescribed along the circumferential direction

on the inner and outer boundaries. Same set of boundary conditions are used for the grids for an annulus.
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For the grids for the square and the convex geometries, Dirichlet boundary conditions are prescribed along

two opposing boundaries in one coordinate direction, n, and Neumann boundary conditions are prescribed

along the other two opposing boundaries in the other coordinate direction, g, i.e., Dirichlet along the upper

and lower boundaries and Neumann along the left and right boundaries.

Then, by interchanging the independent and dependent variables, the governing equations to be solved

in the computational space (n; g) become

axnn � 2bxng þ cxgg ¼ �J 2ðP ðn; gÞxn þ Qðn; gÞxgÞ;
aynn � 2byng þ cygg ¼ �J 2ðP ðn; gÞyn þ Qðn; gÞygÞ:

These equations are solved in the computational space using a line SOR relaxation algorithm where each

coordinate line in one curvilinear coordinate direction is solved semi-implicitly using the Thomas algorithm

for tri-diagonal systems. The inhomogeneous terms referred to above are designed and incorporated so that

a desired grid behavior near the boundaries is achieved.

The inhomogeneous problem is solved using a technique similar to that of [4] by over-relaxing the in-

homogeneous terms during the iteration process. The inhomogeneous terms used in [4] are well suited for

external boundary value problems where clustering is allowed in only one curvilinear coordinate direction,

normal to the body. But, in internal boundary value problems, inhomogeneous terms have to take account
the influence of the boundaries in both curvilinear coordinate directions. As discussed above, the inho-

mogeneous terms used here allow for clustering in both coordinate directions automatically.

The inhomogeneous terms, P ðn; gÞ and Qðn; gÞ, are evaluated at the boundaries in terms of the left-hand

side at each line relaxation sweep. Then away from each boundary, the inhomogeneous terms are atten-

uated through an exponential function in each direction, as discussed above. In n direction, this exponential

term is of the form, �eiðgÞ expð�fiðgÞjn � nijÞ, for Pðn; gÞ and of the form, �giðgÞ expð�fiðgÞjn � nijÞ for

Qðn; gÞ.
In what is stated above, a proof of concept study for an annulus, a square, a convex geometry and a

gear-tooth is carried out to demonstrate the usefulness of the new boundary constraints. Then, the grid for

a complete 19-tooth gear is generated using periodic boundary conditions in the circumferential direction.

This is the only way to solve the grid generation problem in a larger context of structural dynamical

simulation of the gear, since the grid for the entire gear will be subjected to dynamic stresses nonuniformly.

The boundary constraints given by, e.g., Eqs. (7) and (8), are applied to a region close to the boundary.

For example, a finite slender strip close to the boundary, gmax, as shown in Fig. 1, is used as a control
Fig. 1. A schematic showing the finite slender strip over which the boundary constraint is applied; pin is thin in the z-direction.
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volume to evaluate the heat sink term and the convective flux term over it with the net heat flux calculated

around it. At the g ¼ gmax boundary, the heat transfer coefficient, h2 is large, whereas the heat transfer

coefficient, h1 is moderate. The pin fin is thin in the z direction, and the ambient enveloping the fin in the

neighborhood of and around the gmax boundary can be imagined to be at a temperature, g1 ¼ gmax, since h2
is large. Now, as h1 becomes smaller, the temperature gradient in the y direction near the boundary gmax

increases, for a given heat flux (given number of grid lines, per the boundary prescription), and therefore the

clustering there becomes denser. This is the physical basis for the argument that the clustering at a given

boundary becomes denser when the decay parameter, e.g., biðnÞ, associated with the cibih term in Eq. (7)
decreases.

However, the caveat here is that the thin fin analogy holds for a two-dimensional case only. The

boundary constraints are easily extended to three dimensions, but the physical analog is not now a thin fin.

The results of a study discussing three-dimensional version of the new constraints will appear later.
4. Results

The new boundary constraints have been validated by generating two-dimensional interior grids for an

annulus, a square, a convex geometry, a gear-tooth and a complete gear. Fig. 2 shows an interior grid for an

annulus, clustered at two opposing g boundaries. The degree of clustering at/near the g boundaries is

measured by a clustering parameter, DS=DSav, where DS is the normal spacing at the g boundary and DSav is
the average spacing based on the length of the n coordinate line from one g boundary to the opposing g
boundary and the number of grid points along this n coordinate line. Therefore, as the clustering parameter

at a given boundary decreases in value, clustering becomes denser at/near that boundary and vice versa.

Figs. 3(a) and (b) show the distribution of the lower and upper boundary decay parameter functions over
the circumference corresponding to the clustering parameter value of 0.1, and Figs. 3(c) and (d) show the

convergence history of an averaged decay parameter value (averaged over the circumference) for both the

lower and upper boundaries. Calculations are stopped when the relative convergence criterion that the final

average spacing at any given boundary be within 10% of the initial average spacing at that boundary is met.
Fig. 2. Finite difference grid of annulus, clustering parameter¼ 0.1.



Fig. 3. Results for the annulus: lower boundaries (a,c) and upper boundaries (b,d). (a) and (b) decay parameter function distribution

over the circumference; (c) and (d) convergence history of decay parameter averaged over the circumferential direction.
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As is seen in Figs. 3(a) and (b), the decay parameter function is uniform in the circumferential direction,

as expected in the case of the annulus, except for the end effects due to a different discretization stencil at the

end points (periodic boundary conditions). In Figs. 3(c) and (d), the decay parameter averaged over the

circumferential direction is seen to rapidly converge to steady state values of 1.26 and 0.44 for the lower and

upper boundaries, respectively (see Table 1). Corresponding to this converged solution, the decay functions

that attenuate the inhomogeneous terms for the lower and upper boundaries are shown in Figs. 4(a) and

(b). The ordinate in these figures shows the number of grid points along a given n coordinate line between
Table 1

Grid characteristics

Grid Clustering parameters Averaged decay parameter

n g Lower Upper Left Right

Annulus 0.1 1.26 0.44

Annulus 0.5 1.22 0.74

Square 5.0 0.1 0.81 0.58

Square 5.0 5.0 0.57 0.54

Convex 6.0 0.39

Convex 5.0 0.45

Convex 3.0 0.52

Gear 0.1 0.93 0.55

Gear 5.0 0.59



Fig. 4. Results for the annulus: lower boundary (a) and upper boundary (b). (a) and (b) Distribution of the decay function (based on

the circumferentially averaged decay parameter, biav ), expð�biav jg � gijÞ, along the radial-like g coordinate.
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the top and bottom g boundaries, and the abscissa represents the decay function based on the circum-

ferentially averaged decay parameter.

For comparison, Fig. 5 shows the grid for the annulus with a clustering parameter of 0.5. As is shown in

Table 1, the averaged decay parameter value at the upper g boundary increases to 0.74, as expected, but

does not change appreciably at the lower g boundary. The reason for this is that the upper boundary does
not now attract as many g grid lines toward it as before when the clustering parameter of 0.1 was used.

Hence, more g grid lines are pushed toward the lower g boundary, thus keeping the lower boundary decay

parameter from increasing proportionately.

A more rigorous test case of an internal grid in a square is considered in Figs. 6–8. The grid is clustered

in both the coordinate directions, n and g. The decay parameter functions in both coordinate directions are

calculated simultaneously as part of the solution. Fig. 6 shows the converged grid clustered in both hori-

zontal and vertical directions. The clustering is achieved according to the clustering parameter of 0.1 in the

vertical direction from lower boundary to the upper boundary and clustering parameter of 5.0 in the
Fig. 5. Finite difference grid of annulus, clustering parameter¼ 0.5.



Fig. 6. Finite difference grid of square, n clustering parameter¼ 5.0, g clustering parameter of 0.1. (a) Complete square. (b) Enlarged

view of lower right corner.

Fig. 7. Results for the square: lower boundaries (a,c) and right boundaries (b,d). (a) and (b) distribution of decay parameter function over

the corresponding boundaries; (c) and (d) convergence history of decay parameter function averaged over the corresponding boundaries.
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horizontal direction from the left to the right boundary. Clustering parameter of 5.0 in the n direction

ensures the coarsest grid at the left boundary. At the left and right boundaries, Neumann boundary

conditions are applied and Dirichlet boundary conditions are specified over the lower and upper bound-

aries. As stated above, nearly orthogonal grid is realized at the lower and upper boundaries. But, strictly



Fig. 8. Results for the square: distribution of the decay function (based on appropriately averaged decay parameter). (a) Lower

boundary expð�biav jg � g1jÞ. (b) Right boundary, expð�fiav jn � nmaxjÞ.
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orthogonal grid at the left and right boundaries is realized because the initial prescription of grid points on

the left and right boundaries is overridden by the Neumann boundary conditions thus allowing the grid

points at these boundaries to float to ensure strict orthogonality there.

Figs. 7(a) and (b) show the distribution of the respective decay parameter functions along the lower (g1)
and right (nmax) boundaries.

Figs. 7(c) and (d) show average decay parameter (averaged over the corresponding coordinate boundary)

convergence history (see Table 1 for the values for corresponding averaged decay parameters).

Corresponding to this converged solution, the decay functions that attenuate the inhomogeneous terms

for the lower and right boundaries are shown in Figs. 8(a) and (b). The ordinate in these figures shows the

number of grid points along a given coordinate line between the two orthogonal opposing boundaries, and

the abscissa represents the decay function appropriately averaged along a given boundary.

Again, for comparison, Fig. 9 shows the grid for the square with clustering parameter of 5.0 for both the
n and g directions. Corresponding values of the averaged decay parameter are shown in Table 1.

In Fig. 10, a grid for the convex geometry corresponding to a clustering parameter of 6.0 was generated.

The convex geometry (see e.g. [13]) is defined as follows

x ¼ �1; x ¼ 0; y ¼ 0; y ¼ 0:75þ 0:25 sinðpð0:5� 2xÞÞ:
Fig. 9. Finite difference grid of square, n clustering parameter¼ 5.0, g clustering parameter¼ 5.0. (a) Complete square. (b) Enlarged

view of upper right corner.
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Grid is clustered at the upper boundary (gmax), corresponding to a clustering parameter 6.0 at the lower

boundary to ensure the coarsest grid at the lower boundary and the finest at the upper boundary. At the left

and right boundaries, Neumann boundary conditions are applied and Dirichlet boundary conditions are

specified over the lower and upper boundaries. As in the case of a square (Figs. 6 and 9), nearly orthogonal

grid is realized at the lower and upper boundaries. Again, strictly orthogonal grid at the left and right

boundaries is realized due to the application of the Neumann boundary conditions there.

Figs. 10–12 show the grids for the convex geometry corresponding to clustering parameters of 6.0, 5.0

and 3.0. As is shown in Table 1, the corresponding values for the averaged decay parameter increase from
0.39 to 0.45 to 0.52 as the clustering parameter decreases from 6.0 to 5.0 to 3.0. This clearly establishes the

inverse relationship as postulated in the Governing Equations section, namely, the lower the decay pa-
Fig. 10. Finite difference grid of the convex geometry, clustering parameter¼ 6.0.

Fig. 11. Finite difference grid of the convex geometry, clustering parameter¼ 5.0.



Fig. 12. Finite difference grid of the convex geometry, clustering parameter¼ 3.0.
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rameter at a given boundary, the higher the clustering at that boundary. Stated differently, lower the decay

parameter at a given boundary, the lower the clustering parameter associated with that boundary, or higher

the clustering parameter associated with the opposite boundary.

Corresponding decay function attenuation rates are shown in Figs. 13(a)–(c). It is observed that the
decay function decays from a value of 1.0 to 1.e) 03 within 18 grid points from the gmax boundary cor-

responding to Fig. 10, within 15 points corresponding to Fig. 11 and within 9 points corresponding to Fig.

12. This is consistent with the fact that the higher the clustering rate, the more spread out the decay function

is away from the boundary.

Hence, the rapidity with which the decay function gets attenuated is a function of the clustering pa-

rameter. The lower the clustering parameter specific to a given boundary, the smaller the decay parameter

corresponding to that boundary, the more clustered the grid is at that boundary and, therefore, the lower

the rapidity with which the decay function gets attenuated away from that boundary.
In the convex geometry example, clustering parameters of 3.0, 5.0 and 6.0 were selected to show that the

underlying assumptions for the boundary constraints work well even for mild to moderate clustering pa-

rameters or that they work well even for decay parameters of the order of 1 (i.e., 0.52, 0.45, 0.39, re-

spectively). This is important since the extent of applicability of the proposed boundary constraints is thus

demonstrated to be large. Obviously, for even smaller decay parameters (less than order of 1), for which the
Fig. 13. Results for the convex geometry: (a)–(c) Decay function (based on biav ), expð�biav jg � gmaxjÞ. Clustering parameters: (a) 6.0;

(b) 5.0; (c) 3.0.
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underlying assumptions tend towards being rigorously valid, the boundary constraints are even more ap-

plicable.

Fig. 14 shows the gear tooth grid for one-sided clustering at the gmax (upper) boundary. The value of the

clustering parameter at the lower boundary is 5.0, which means that the grid is coarsest at the lower

boundary and it progressively gets refined toward the upper boundary. Dirichlet boundary conditions were

applied at the n1 (left) and nmax (right) boundaries.

As a comparative example, a test case was run with an a priori prescribed value of the decay parameter

of 0.15 corresponding to the case shown in Fig. 14, i.e., with a clustering parameter value of 5.0, and the
resulting grid rapidly degrades as shown in Fig. 15(a), and the corresponding solution convergence history

is shown in Fig. 15(b), where after 50 iterations, the solution aborts due to negative values of Jacobians.
Fig. 14. Finite difference grid of pinion gear tooth, clustering parameter¼ 5.0.

Fig. 15. Comparative results for the gear tooth with a fixed decay parameter value of 0.15; clustering parameter of 5.0: (a) grid for the

tooth (negative Jacobians); (b) convergence history (solution diverges rapidly in 50 iterations).
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This is just an example of the problems encountered in the trial-and-error process in prescribing the decay

parameter manually, for which now a solution has been found through the new constraints derived in the

present study.

Fig. 16 shows a section of the complete 19-tooth gear grid which was generated using periodic boundary

conditions in the n direction (circumferential direction) with a clustering parameter of 0.1.

The resulting grid is smooth and orthogonal throughout in this case, as expected. The strict enforcement

of orthogonality at the n boundaries is ensured here since the grid for the 19-tooth gear is generated with the

periodic boundary conditions prescribed at these boundaries.
Another grid simulation with the clustering parameter value of 5.0 was made with the complete 19-tooth

gear. The corresponding grid is shown in Fig. 17.
Fig. 16. Section of a finite difference grid of pinion gear, clustering parameter¼ 0.1.

Fig. 17. Finite difference grid of a section of pinion gear, clustering parameter¼ 5.0.
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Finally, Table 1, as shown above, characterizes the various grids generated using the new constraints.

The values of the clustering parameters and the resulting averaged decay parameters corresponding to each

grid are shown in this table.
5. Concluding remarks

The usefulness of the boundary constraints for elliptic grid generation problems developed in this study
has been demonstrated for five internal geometrical configurations. Internal grids for an annulus, a square,

a convex geometry, a gear tooth and a complete 19-tooth gear were generated using the new constraints.

Smooth clustered grids have been generated using these constraints without hit-and-trial prescription of

decay parameters and without any recourse to redistribution of grid points, which has been a common

approach used in elliptic grid generation problems until now. With new constraints, elliptic grids can be

generated in simulation time without any manual intervention thus making problems of structural dy-

namics and fluid dynamics over compliant boundaries more tractable. Thus, a fully automated elliptic grid

generation methodology has been developed and validated.
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